
What Is SDLC? Understand the Software Development Life Cycle
The Software Development Life Cycle (SDLC) refers to a methodology with clearly defined
processes for creating high-quality software. in detail, the SDLC methodology focuses on
the following phases of software development:

 Requirement analysis
 Planning
 Software design such as

architectural design

 Software development
 Testing
 Deployment

This article will explain how SDLC works, dive deeper in each of the phases, and provide you
with examples to get a better understanding of each phase.
Tip: Find application errors and performance problems instantly with Stackify Retrace
Troubleshooting and optimizing your code is easy with integrated errors, logs and code
level performance insights.

What is the software development life cycle?

SDLC or the Software Development Life Cycle is a process that produces software with the
highest quality and lowest cost in the shortest time possible. SDLC provides a well-
structured flow of phases that help an organization to quickly produce high-quality software
which is well-tested and ready for production use.
The SDLC involves six phases as explained in the introduction. Popular SDLC models include
the waterfall model, spiral model, and Agile model.

The different stages of the Software Development Life Cycle.

Stages and Best Practices
Following the best practices and/or stages of SDLC ensures the
 process works in a smooth, efficient, and productive way.
1. Identify the Current Problems

“What are the current problems?” This stage of the SDLC means getting input from all
stakeholders, including customers, salespeople, industry experts, and programmers. Learn
the strengths and weaknesses of the current system with improvement as the goal.
2. Plan

“What do we want?” In this stage of the SDLC, the team determines the cost and resources
required for implementing the analyzed requirements. It also details the risks involved and
provides sub-plans for softening those risks.
In other words, the team should determine the feasibility of the project and how they can
implement the project successfully with the lowest risk in mind.

https://economictimes.indiatimes.com/definition/waterfall-model
http://searchsoftwarequality.techtarget.com/definition/spiral-model
http://istqbexamcertification.com/what-is-agile-model-advantages-disadvantages-and-when-to-use-it/
https://stackify.com/sdlc-phases-identify-problems/

3. Design

“How will we get what we want?” This phase of the SDLC starts by turning the software
specifications into a design plan called the Design Specification. All stakeholders then
review this plan and offer feedback and suggestions. It’s crucial to have a plan for collecting
and incorporating stakeholder input into this document. Failure at this stage will almost
certainly result in cost overruns at best and the total collapse of the project at worst.
4. Build

“Let’s create what we want.”
At this stage, the actual development starts. It’s important that every developer sticks to
the agreed blueprint. Also, make sure you have proper guidelines in place about the code
style and practices.
For example, define a nomenclature for files or define a variable naming style such as
camelCase. This will help your team to produce organized and consistent code that is easier
to understand but also to test during the next phase.
5. Code Test

“Did we get what we want?” In this stage, we test for defects and deficiencies. We fix those
issues until the product meets the original specifications.
In short, we want to verify if the code meets the defined requirements.
6. Software Deployment

“Let’s start using what we got.”
At this stage, the goal is to deploy the software to the production environment so users can
start using the product. However, many organizations choose to move the product through
different deployment environments such as a testing or staging environment.
This allows any stakeholders to safely play with the product before releasing it to the
market. Besides, this allows any final mistakes to be caught before releasing the product.
Extra: Software Maintenance

“Let’s get this closer to what we want.” The plan almost never turns out perfect when it
meets reality. Further, as conditions in the real world change, we need to update and
advance the software to match.
The DevOps movement has changed the SDLC in some ways. Developers are now
responsible for more and more steps of the entire development process. We also see the
value of shifting left. When development and Ops teams use the same toolset to track
performance and pin down defects from inception to the retirement of an application, this
provides a common language and faster handoffs between teams. Application performance
monitoring (APM) tools can be used in a development, QA, and production environment.
This keeps everyone using the same toolset across the entire development lifecycle.

Waterfall Model
This SDLC model is the oldest and most straightforward. With this methodology, we finish
one phase and then start the next. Each phase has its own mini-plan and each phase
“waterfalls” into the next. The biggest drawback of this model is that small details left
incomplete can hold up the entire process.

https://en.wikipedia.org/wiki/Camel_case
https://stackify.com/what-is-devops/

Agile Model

The Agile SDLC model separates the product into cycles and delivers a working product very
quickly. This methodology produces a succession of releases. Testing of each release feeds
back info that’s incorporated into the next version. According to Robert Half, the drawback
of this model is that the heavy emphasis on customer interaction can lead the project in the
wrong direction in some cases.
Iterative Model

This SDLC model emphasizes repetition. Developers create a version very quickly and for
relatively little cost, then test and improve it through rapid and successive versions. One big
disadvantage here is that it can eat up resources fast if left unchecked.
V-Shaped Model

An extension of the waterfall model, this SDLC methodology tests at each stage of
development. As with waterfall, this process can run into roadblocks.

Big Bang Model

This high-risk SDLC model throws most of its resources at development and works best for
small projects. It lacks the thorough requirements definition stage of the other methods.
Spiral Model

The most flexible of the SDLC models, the spiral model is similar to the iterative model in its
emphasis on repetition. The spiral model goes through the planning, design, build and test
phases over and over, with gradual improvements at each pass.
Benefits of the SDLC

SDLC done right can allow the highest level of management control and documentation.
Developers understand what they should build and why. All parties agree on the goal
upfront and see a clear plan for arriving at that goal. Everyone understands the costs and
resources required.
Several pitfalls can turn an SDLC implementation into more of a roadblock to development
than a tool that helps us. Failure to take into account the needs of customers and all users
and stakeholders can result in a poor understanding of the system requirements at the
outset. The benefits of SDLC only exist if the plan is followed faithfully.
Want to improve application quality and monitor application performance at every stage of
the SDLC?
Try out Stackify’s Retrace tool for free and experience how it can help your organization at
producing higher-quality software.
Agile Model
The meaning of Agile is swift or versatile."Agile process model" refers to a software
development approach based on iterative development. Agile methods break tasks into
smaller iterations, or parts do not directly involve long term planning. The project scope and
requirements are laid down at the beginning of the development process. Plans regarding

https://www.roberthalf.com/technology/blog/6-basic-sdlc-methodologies-the-pros-and-cons
https://stackify.com/sdlc-phases-identify-problems/
https://stackify.com/retrace/

