
CLASS
Class is a user defined blueprint or prototype from which objects are created. It represents
the set of properties or methods that are common to all objects of one type. ... Modifiers: A class
can be public or has default access (Refer this for details). class keyword: class keyword is
used to create a class.

Java Classes/Objects
Java is an object-oriented programming language.

Everything in Java is associated with classes and objects, along with its
attributes and methods. For example: in real life, a car is an object. The car

has attributes, such as weight and color, and methods, such as drive and
brake.
A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class
To create a class, use the keyword class:

Main.java
Create a class named "Main" with a variable x:
public class Main {
 int x = 5;
}

Remember from the that a class should always start with an uppercase first
letter, and that the name of the java file should match the class name.

Create an Object
In Java, an object is created from a class. We have already created the class

named Main, so now we can use this to create objects.

To create an object of Main, specify the class name, followed by the object

name, and use the keyword new:

Example
Create an object called "myObj" and print the value of x:
public class Main {
 int x = 5;

 public static void main(String[] args) {
 Main myObj = new Main();
 System.out.println(myObj.x);
 }
}

Multiple Objects
We can create multiple objects of one class:

Example
Create two objects of Main:
public class Main {
 int x = 5;

 public static void main(String[] args) {
 Main myObj1 = new Main(); // Object 1
 Main myObj2 = new Main(); // Object 2
 System.out.println(myObj1.x);
 System.out.println(myObj2.x);
 }
}

Multiple Objects
We can create multiple objects of one class:

Example
Create two objects of Main:
public class Main {
 int x = 5;

 public static void main(String[] args) {
 Main myObj1 = new Main(); // Object 1
 Main myObj2 = new Main(); // Object 2
 System.out.println(myObj1.x);
 System.out.println(myObj2.x);
 }
}

Second.java
class Second {
 public static void main(String[] args) {
 Main myObj = new Main();
 System.out.println(myObj.x);
 }
}

When both files have been compiled:
C:\Users\Your Name>javac Main.java
C:\Users\Your Name>javac Second.java

Run the Second.java file:
C:\Users\Your Name>java Second
And the output will be:
5

Java Class Attributes
In the previous chapter, we used the term "variable" for x in the example (as

shown below). It is actually an attribute of the class. Or you could say that

class attributes are variables within a class:

Example
Create a class called "Main" with two attributes: x and y:
public class Main {
 int x = 5;
 int y = 3;
}
Another term for class attributes is fields.

Accessing Attributes
We can access attributes by creating an object of the class, and by using the

dot syntax (.):

The following example will create an object of the Main class, with the

name myObj. We use the x attribute on the object to print its value:

Example
Create an object called "myObj" and print the value of x:
public class Main {
 int x = 5;

 public static void main(String[] args) {
 Main myObj = new Main();
 System.out.println(myObj.x);
 }
}

Modify Attributes
We can also modify attribute values:

Example
Set the value of x to 40:
public class Main {
 int x;

 public static void main(String[] args) {
 Main myObj = new Main();
 myObj.x = 40;
 System.out.println(myObj.x);

 }
}

Or override existing values:

Example
Change the value of x to 25:
public class Main {
 int x = 10;

 public static void main(String[] args) {
 Main myObj = new Main();
 myObj.x = 25; // x is now 25
 System.out.println(myObj.x);
 }
}

If you don't want the ability to override existing values, declare the attribute

as final:

Example
public class Main {
 final int x = 10;

 public static void main(String[] args) {
 Main myObj = new Main();
 myObj.x = 25; // will generate an error: cannot assign a value to a
final variable
 System.out.println(myObj.x);
 }
}

The final keyword is useful when you want a variable to always store the same

value, like PI (3.14159...).

The final keyword is called a "modifier". You will learn more about these in

the Java Modifiers Chapter.

Multiple Objects
If you create multiple objects of one class, you can change the attribute values

in one object, without affecting the attribute values in the other:

Example
Change the value of x to 25 in myObj2, and leave x in myObj1 unchanged:
public class Main {

https://www.w3schools.com/java/java_modifiers.asp

 int x = 5;

 public static void main(String[] args) {
 Main myObj1 = new Main(); // Object 1
 Main myObj2 = new Main(); // Object 2
 myObj2.x = 25;
 System.out.println(myObj1.x); // Outputs 5
 System.out.println(myObj2.x); // Outputs 25
 }
}

Multiple Attributes
You can specify as many attributes as you want:

Example
public class Main {
 String fname = "John";
 String lname = "Doe";
 int age = 24;

 public static void main(String[] args) {
 Main myObj = new Main();
 System.out.println("Name: " + myObj.fname + " " + myObj.lname);
 System.out.println("Age: " + myObj.age);
 }
}

