
DATA TYPE
A data type is an attribute of a variable which tells the compiler or interpreter how the
programmer intends to use the variable. It defines the operations that can be done on
the data and what type of values can be stored. In this article, I will give you a brief
insight into the different data types in Java. According to the properties they possess,
data types are divided into two groups:

1. Primitive Data Types
2. Non-Primitive Data Types

Primitive Data Types: A primitive data type is pre-defined by the programming
language. The size and type of variable values are specified, and it has no additional
methods.
Non-Primitive Data Types: These data types are not actually defined by the
programming language but are created by the programmer. They are also called
“reference variables” or “object references” since they reference a memory location
which stores the data.
Now, let‟s move further and get into the details of Primitive Data Types.

Primitive Data Types

Now let‟s understand each of these data types in depth. First I will tell you what is
boolean data type.

boolean data type
A boolean data type comprises of a bit of information and can store
only true or false values. This data type is used to track true/false conditions. Now
let‟s write a small program and understand how it works.

https://www.edureka.co/blog/java-tutorial/#variables
https://www.edureka.co/blog/java-tutorial/
https://www.edureka.co/blog/data-types-in-java/#PrimitiveDataTypes
https://www.edureka.co/blog/data-types-in-java/#Non-PrimitiveDataTypes

1

2

3

4

5

6

7

8

9

10

class booleanDataType
{
public static void main(String args[])
{
// Setting the values for boolean data type

boolean Java = true;
boolean Python = false;
System.out.println(Java); // Output will be

true

System.out.println(Python); // Output will be

false
}
}

That was all about the boolean data type. I hope you understood it. Now let‟s move
further and understand the next data type i.e. byte data type.

byte data type
This is an example of a primitive data type. It is an 8-bit signed two‟s complement
integer. It stores whole numbers that lie between -128 to 127. A byte data type is helpful
for saving memory in large amounts. Now let‟s write a small program and understand
how it works.

1

2

3

4

5

6

7

8

9

class ByteExample
{
public static void main(String[] args)
{
byte n, a;
n = 127;

a=177;
System.out.println(n); // prints 127
System.out.println(a); // throws an error because it

cannot store more than 127 bits
}
}

That was all about the byte data type. Now let‟s move further and comprehend the
following data type i.e. char.

char data type

This data type is used to store a single character. The character must be enclosed
within single quotes, like „E‟ or „e‟. Alternatively, you can also use ASCII values to
display certain characters. Let‟s take a small example and see how it works.

Java

Certi

ficati

on

Trtru
ctor-
led
Sessi

ons
That was all about the char data type. I hope you understood it. Now let‟s move further
and understand the next data type on the list i.e. short data type.

short data type
A short data type is greater than byte in terms of size and less than a integer. It stores
the value that ranges from -32,768 to 32767. The default size of this data type: 2 bytes.
Let‟s take an example and understand the short data type.

1

2

3

4

5

6

class ShortExample {
public static void main(String[] args) {
short n= 3435,
System.out.println(n); // prints the value

present in n i.e. 3435
}
}

int data type
This data type can store whole numbers from -2147483648 to 2147483647. Generally,
int is the preferred data type when you create variables with a numeric value.
For example:

1

2

int num = 5464564;
System.out.println(num); // prints 5464564

long data type
This data type is a 64-bit two‟s complement integer. By default, the size of a long data
type is 64 bit and its value ranges from -263 to 263-1.
For example:

1

2

long num = 15000000000L;
System.out.println(num); // prints 15000000000

1

2

3

4

5

6

7

8

char alpha = 'J';

char a = 65, b = 66, c = 67;
System.out.println(alpha); // prints J

System.out.println(a); // Displays 65
System.out.println(b); // Displays 66
System.out.println(c); // Displays 67

https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/blog/java-tutorial/#variables

Floating Datatypes
You should use a floating point type whenever you need a number with a decimal, such
as 8.88 or 3.14515.

float data type
This data type can store fractional numbers from 3.4e−038 to 3.4e+038. Note that you
should end the value with an “f”. Let‟s take a small example and understand this data
type in a detailed manner.

1

2

float num =67;
System.out.println(num); // prints the floating number value

So this is how you can use the float data type. Now let‟s see one more floating data type
i.e. double.

double data type
The double data type can store fractional numbers from 1.7e−308 to 1.7e+308. Note
that you should end the value with a “d”:

1

2

double num = 79.678d;
System.out.println(num); // prints double value

That was all about Double data type and this brings us to the end of Primitive
Datatypes. Now let‟s figure out the difference between primitive and non-primitive data
types.

Non-Primitive Datatypes
Non-Primitive data types refer to objects and hence they are called reference
types. Examples of non-primitive types include Strings, Arrays, Classes, Interface, etc.
Below image depicts various non-primitive data types.

Strings: String is a sequence of characters. But in Java, a string is an object that
represents a sequence of characters. The java.lang.String class is used to create a
string object. If you wish to know more about Java Strings, you can refer to this article
on Strings in Java.

Arrays: Arrays in Java are homogeneous data structures implemented in Java as
objects. Arrays store one or more values of a specific data type and provide indexed
access to store the same. A specific element in an array is accessed by its index. If you
wish to learn Arrays in detail, then kindly check out this article on Java Arrays.

Classes: A class in Java is a blueprint which includes all your data. A class contains
fields(variables) and methods to describe the behavior of an object.

https://www.edureka.co/blog/java-string/
https://www.edureka.co/blog/java-array/
https://www.edureka.co/blog/java-tutorial/#obj

Interface: Like a class, an interface can have methods and variables, but the methods
declared in interface are by default abstract (only method signature, no body).
So that was all about the non-primitive data types. Now let‟s understand the difference
between primitive and non-primitive data types.

Literals in Java

Literal : Any constant value which can be assigned to the variable is called as literal/constant.

// Here 100 is a constant/literal.

int x = 100;

Integral literals
For Integral data types (byte, short, int, long), we can specify literals in 4 ways:-

1. Decimal literals (Base 10) : In this form the allowed digits are 0-9.

2. int x = 101;

3. Octal literals (Base 8) : In this form the allowed digits are 0-7.

4. // The octal number should be prefix with 0.

5. int x = 0146;

6. Hexa-decimal literals (Base 16) : In this form the allowed digits are 0-9 and characters are a-f. We can use

both uppercase and lowercase characters. As we know that java is a case-sensitive programming language but

here java is not case-sensitive.

7. // The hexa-decimal number should be prefix

8. // with 0X or 0x.

9. int x = 0X123Face;

10. Binary literals : From 1.7 onward we can specify literals value even in binary form also, allowed digits are 0

and 1. Literals value should be prefixed with 0b or 0B.

11. int x = 0b1111;

Example :

// Java program to illustrate the application of Integer literals
public class Test {
 public static void main(String[] args)
 {
 int a = 101; // decimal-form literal
 int b = 0100; // octal-form literal
 int c = 0xFace; // Hexa-decimal form literal
 int d = 0b1111; // Binary literal
 System.out.println(a);
 System.out.println(b);
 System.out.println(c);
 System.out.println(d);
 }
}

https://www.edureka.co/blog/java-collections/#interface

