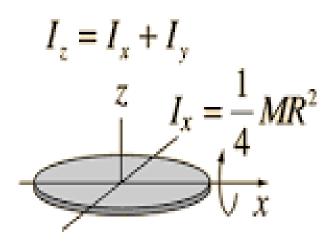
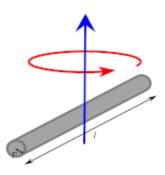

## Structural Mechanics

PREPARED BY: BIKASH DEBANTH
CIVIL TECHNOLOGY

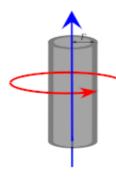

## Moment of Inertia

• Moment of inertia is usually specified with respect to a chosen axis of rotation. It mainly depends on the distribution of mass around an axis of rotation. MOI varies depending on the axis that is chosen.


| SHAPE       | MOMENT OF INERTIA                           | RADIUS OF GYRATION    |
|-------------|---------------------------------------------|-----------------------|
| RECTANGLE h | $I_x = \frac{bh^3}{12}$                     | $\frac{h}{\sqrt{12}}$ |
| TRIANGLE    | $I_x = \frac{bh^3}{36}$                     | $\frac{h}{\sqrt{18}}$ |
| CIRCLE      | $\frac{\pi r^4}{4}$ OR $\frac{\pi D^4}{64}$ | <b>r 2</b>            |

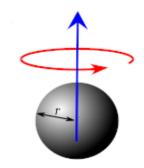


$$I_x = I_y = \frac{1}{4}MR^2$$



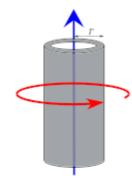

Since the x and y axes are identical by symmetry, they must have equal moments of inertia.




Rod about center

$$I = \frac{1}{12}ml^2$$

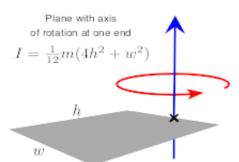



Rod or disc about axis

$$I=\tfrac{1}{2}mr^2$$



Sphere


$$I=\frac{2}{5}mr^2$$



 $\overline{w}$ 

Hollow rod or disc, thin wall. About axis.

$$I=mr^2$$



Plane about center

$$I = \frac{1}{12}m(h^2 + w^2)$$