Solution

Actual concentration of H+H+ ions or OH-OH- ions in an aqueous solution of an acid or base respectively depends upon the number of H+H+ ions or OH-OH- ions furnished by one molecule of an acid or base respectively on ionization. This is given by basicity of an acid that number of H+H+ ions furnished by on molecule of acid and acidity of a base that is number of OH-OH- ions furnished by one molecule of base.

asicity	Examples
1	$HCl \rightarrow H^+ + Cl^-$
	$HNO_3 \rightarrow H^+ + NO_3^-$
	$CH_{3}COOH \rightarrow H^{-} +$
	CH ³ COO-
Dibasic acid 2	$H_2SO_4 \rightarrow 2H^+ + SO_4^{-2}$
	$H_2CO_3 \rightarrow 2H^* + CO_3^{-2}$
	$H_2C_2O_4 \rightarrow 2H^+ + C_2O_4^{-2}$
3	$H_3PO_4 \rightarrow 3H^4 + PO_4^{-3}$
Astellas	Examples
Actually	The second s
1	$NaOH \rightarrow Na^+ + OH^-$
	$\mathrm{KOH} \rightarrow \mathrm{K}^+ + \mathrm{OH}^-$
	$NH_4OH \rightarrow NH_4^+ + OH^-$
2	$Ca(OH)_2 \rightarrow Ca^{+2} + 2OH$
	$Ba(OH)_2 \rightarrow Ba^{+2} + 2OH^-$
3	$AI(OH)_3 \rightarrow AI^{+3} + 3OH^{-1}$
	1 2 3 Acidity 1 2